Recognition and Prevention of Pre-analytical Error in Blood Gases:

BCSLS Congress 2012
September 28, 2012

John J Ancy, MA, RRT
Senior Clinical Consultant
Instrumentation Laboratory

Werfen Group
The Institute of Medicine in 1999 reported that medical errors may result in as many as 98,000 patient deaths annually in the United States at a cost of $17-29 billion.

JCAHO STATED GOAL:
Eliminate laboratory errors that lead to adverse patient outcomes
JCAHO, CAP, CLIA, Hospitals invest effort and resources to reduce medical error
Report Card- Medical Deaths US & Canada

98,000 Institute of Medicine (To Err is Human, 1999)

198,000 Newsweek 2005

250,000 (AMA) St. Louis Post Dispatch 2009

Canadian Medical Association Report

9000-24000 medical error deaths per year

Medicare Study on Medical Error

Medical Harm

- **134,000** Medicare beneficiaries experience harm from medical error each month (1 in 7)
- **1.6** million harmed each year

Mortality

- **15,000** or 1.5% die from causes associated medical error each month
- **180,000** deaths each year (nearly 500/day)
Lab Errors

Approximately 80% of clinical treatments are based upon lab test results

Reduction in lab errors will help reduce medical errors
Reducing Laboratory Error: Blood Gases
Arguably the most critical of lab results

- Critically ill patients
- Right results needed quickly
- Interventions often applied immediately
- Little margin for error
Reducing Laboratory Error

Total Error Concept

- Pre-analytical
- Analytical
- Post analytical
How important is Pre-analytical Error?

- Historically, most effort, regulations and expense on related to analytical QC.

- However, 75% of error in blood gases from preanalytical factors

Pre-analytical Error in Blood Gases

- Diverse level of skill and knowledge in staff obtaining and analyzing BG samples

- Blood cells metabolize – values will change

- Extra care required if Blood Gas sample analysis will be delayed
Pre-analytical Error in Blood Gases

Error chance higher with larger menus
- K^+, Na^+, Cl^-, Ca^{++}, Hct
- Lactate, Glucose,
- CO-Oximetry

Regulatory emphasis increased on pre-analytic component
Pre-analytical error and correlation

Correlation is part of new instrument verification process.

- Pre-analytical error introduces bias and imprecision that is not related to analytic correlation and can compromise studies
- Multi-analyte (Blood Gas, electrolyte, metabolite & CO-Oximetry) analyzers require extra vigilance in preventing pre-analytic error
Pre-analytical Error
Whole Blood

- Living tissue

- Active metabolism continues after blood draw
 - Leukocytes, thrombocytes & reticulocytes
 - Consume oxygen, glucose
 - Produce carbon dioxide & H^+
 - RBCs produce lactate and H^+ via anaerobic glycolysis
Pre-analytical Error
Whole Blood

Sample handling can cause significant error for:

- Blood gases
- Electrolytes
- Metabolites
- CO-Oximetry
Sources of BG Pre-analytical Errors

- Post-draw metabolism
- Steady state
- Heparin
- Air contamination
- Venous admixture
- Storage/Transport
- Abnormal cell count

- Pneumatic tube
- Catheter flush
- PAL placement & withdrawal rate
- Specimen mixing
- Temperature correction
Post-draw metabolism

Blood cells continue metabolism after draw

- Aerobic metabolism
 - White cells
 - Thrombocytes
 - Reticulocytes (immature RBCs)

- Lactate metabolism
 - Red blood cells
Post-draw metabolism

Pre-analytic changes affected by:

- Time and ambient temperature
- Cellular composition of sample RBC/WBC
Pre-analytical error in Blood Gases

Steady state

Wait time for ABG draw after O_2 therapy and/or ventilator/CPAP changes

- 20-30 minutes for steady state*
- Particularly in COPD and other conditions with abnormal V/Q ratios*

Pre-analytical Error

- **Heparin**

 Final concentration should be < 20 IU/ml (if reporting iCa)

- Liquid (Na heparin)
- Dry (Li Heparin)
- Dry balanced (Li Heparin)
Heparin

Liquid Heparin (pH as low as 6.5)

- Small blood sample, results in error
- pH, pO_2, pCO_2
- Na^+, K^+, Ca^{++} (dilution error)
Liquid Heparin

0.05ml liquid heparin in 1.0ml sample dilutes plasma phase by ≈10% (50% Hct)

- ↓ pH
- Na, K, iCa, Cl
<table>
<thead>
<tr>
<th>1.0 ml whole blood sample</th>
<th>0.5 ml whole blood sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hct 50%</td>
<td>Hct 50%</td>
</tr>
<tr>
<td>Liquid heparin 0.05 ml</td>
<td>Liquid heparin 0.05 ml</td>
</tr>
<tr>
<td>Plasma 0.5 ml</td>
<td>Plasma 0.25 ml</td>
</tr>
<tr>
<td>Hep + plasma 0.55 ml</td>
<td>Hep + plasma 0.30 ml</td>
</tr>
<tr>
<td>Dilution ≈10%</td>
<td>Dilution ≈20%</td>
</tr>
<tr>
<td>Blood cells 0.5 ml</td>
<td>Blood cells 0.25 ml</td>
</tr>
</tbody>
</table>

Liq. Heparin = 0.05 mL

Heparin + plasma = 0.55 mL

Dilution = 10%

Blood cells = 0.50 mL
Heparin

Dry Lithium Heparin including:
Balanced and Low heparin formulations

- **Eliminates liquid heparin pH/dilution error**
- Reduces Na error (no added sodium)
- May not mix as readily liquid heparin

- Use “mixing flea” for cap samples?
Heparin Recommendations

- Don’t use liquid
- Use balanced heparin or low heparin if reporting electrolytes
- Gently and thoroughly mix sample (30 sec.) in two planes (Rock & Roll)
- **Remember**: heparin prevents, but doesn’t reverse hemostasis
- Longer mix times for longer delays from draw to analysis (hemoglobin/Hct)
Air Bubble Contamination

* Double Bubble, Toil and Trouble

Air bubbles contain room air

- \(pO_2 \approx 150 \text{ mmHg at sea level} \)
 - 147 in Cleveland, 125 in Denver, 130 in Kamloops
 - May falsely lower or increase \(pO_2 \)

- \(pCO_2 = 0 \text{ mmHg} \)
 - Slight decrease in \(pCO_2 \)
 - Slight increase in pH

* from Macbeth- William Shakespeare
Air Contamination

(0.1 ml in 1.0 ml sample)

<table>
<thead>
<tr>
<th></th>
<th>No Air</th>
<th>Air Bubble</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.53</td>
<td>7.54</td>
</tr>
<tr>
<td>pCO_2</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>pO_2</td>
<td>325</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>7.53</td>
<td>7.53</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>322</td>
<td>304</td>
</tr>
</tbody>
</table>
Air Contamination
(0.1 ml air in 1.0 ml sample)

<table>
<thead>
<tr>
<th></th>
<th>No Air</th>
<th>Air Bubble</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.38</td>
<td>7.38</td>
</tr>
<tr>
<td>(p\text{CO}_2)</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>(p\text{O}_2)</td>
<td>78</td>
<td>79</td>
</tr>
</tbody>
</table>
Air Contamination
Will cause **error**, magnitude is **unpredictable**

- Volume of air/volume of blood
- Number/size of bubbles (surface area effect)
- Time of exposure
- Temperature iced/non-iced
- Initial pO_2
- Hb/HbO$_2$%
 - Oxygen buffering effect of Hb
What’s the Story?

ABG @ 0715

pH 7.37
pCO₂ 47 mmHg
pO₂ 48 mmHg
SpO₂ 96%

ABG redraw @ 0740

pH 7.40
pCO₂ 44 mmHg
pO₂ 88
SpO₂ 96%
Venous Admixture

<table>
<thead>
<tr>
<th>Blood</th>
<th>Volume (ml)</th>
<th>pO_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial</td>
<td>4.5</td>
<td>86</td>
</tr>
<tr>
<td>Venous</td>
<td>0.5</td>
<td>31</td>
</tr>
<tr>
<td>Mixed</td>
<td>5.0</td>
<td>56</td>
</tr>
</tbody>
</table>

Venous Admixture

- The addition of 10% of venous blood to an arterial sample can produce $\geq 25\%$ drop in pO_2
- Increased probability on femoral artery punctures
- Suspect venous contamination if condition & ABG results do not correspond
- Pulse oximetry can be helpful
Capillary Blood Gas Sampling

- Properly “arterialized” sample will yield pH and pCO_2 that are close to ABG and pO_2 that is somewhat lower
- Site should be pre-warmed up to (42°C), increases flow up to 7X
- Free-flowing sample
 - “milking” introduces venous blood and interstitial fluid
- Completely filled, air free tubes, with sealed ends
- Should be analyzed within 15 minutes

Adapted from:
AARC Clinical Practice Guideline: Capillary Blood Gas Sampling for Neonatal and Pediatric Patients
Storage/Transportation

Iced/Non-iced
- Ice slurry (metabolic inhibition)
 - Helps preserve pH, pCO_2, pO_2, glucose & lactate
 - pO_2 might increase in plastic syringes
 - May increase K, decrease Na
- Non-iced
 - Must analyze quickly
 - No change in K
 - ↓ Glucose 9 mg/dL/Hr
 - ↑ Lactate 0.5 mmol/L/Hr
Ice slurry: pro-con

Pro

- Minimizes metabolic changes
 \[pO_2 \downarrow, pCO_2 \uparrow, pH \downarrow, glucose \downarrow, lactate \uparrow \]

 WBCs & thrombocytes oxidative metabolism
 \[pO_2 \downarrow, pCO_2 \uparrow, pH \downarrow, glucose \]

 RBCs anaerobic metabolism
 \[lactate \uparrow, pH \downarrow, glucose \downarrow \]
Ice slurry: pro-con

Con

- Possibility of enhanced “syringe hole” effect
- Inhibition of Na/K pump
- Cell membranes rupture more readily
 - Hemolysis, falsely elevates K
Hole Effect

“Plastic syringes are holes surrounded by plastic”

Kevin Fallon, PhD Director (retired) Scientific Affairs, Instrumentation Laboratory

- Syringes are somewhat porous to gases
- Hole effect is enhanced by exposure to ice water
 - At 4° O₂ solubility nearly doubles
 - Oxyhemoglobin curve shifts to left
 - On analysis at 37° “Increased” pO₂
Ice slurry storage- plastic syringes

- Iced storage - iced vs. 22° C storage: over time, iced samples showed 1/3 of changes in pH, pCO_2 and pO_2 from post-draw metabolism
- Rapid increase in pO_2 in 20-250 mmHg range
- Samples with $pO_2 > 250$ showed decrease over time
- Change in pO_2 effected by HbO$_2$ capacity
- Conclusion: ice stored samples should be analyzed within 30 minutes

Iced Plastic Syringes “Hole Effect”

Ice Slurry

- Icing virtually stops metabolism
- Leukocythemia is an exception
 - Leukocyte larceny
Leukocyte Larceny

- Leukocytes consume O_2 at rapid rate
 - Icing normally slows O_2 consumption
- Samples with very high WBC may consume significant O_2 before sample cools
Leukocyte Larceny

Normal WBC

Leukocythemia

A. Van Kessel
Pneumatic Tube Transport (PT)

Study conclusions:

- pH and pCO_2 not significantly affected by PT, regardless of use of sealed/non-sealed tubes
- pO_2 significantly altered in non-sealed tubes
- pO_2 not significantly different if sent in pressure sealed tubes (if there is no trapped air)

Whole Blood Collection & Storage for Blood Gas and Electrolytes

- Expel air immediately and completely
- Measure < 30 minutes - room temperature*
- Measure > 30 minutes - ice/water slurry*
- Measure immediately- 100,000 white count

Catheter Flush (discard volume)

- Arterial and venous catheters must be adequately flushed prior to sampling

- Inadequate flush volume will bias sample with contents of flush solution

- Appropriate discard volume dependent upon deadspace volume of catheter
Discard Volume Study* (catheter flush)

- 84 critically ill patients, 504 total samples
- 20-gauge A-Line
- 6 samples each with discard volumes of 1, 1.5, 2, 2.3, 3.6 and 5.5 times deadspace

Catheter flush discard volume

<table>
<thead>
<tr>
<th>Deadspace Multiple</th>
<th>1</th>
<th>2</th>
<th>5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.403</td>
<td>7.418</td>
<td>7.424</td>
</tr>
<tr>
<td>pCO_2</td>
<td>35.9</td>
<td>38.8</td>
<td>39.6</td>
</tr>
<tr>
<td>pO_2</td>
<td>102.7</td>
<td>98.3</td>
<td>97.8</td>
</tr>
<tr>
<td>Na</td>
<td>145.6</td>
<td>142.1</td>
<td>141</td>
</tr>
<tr>
<td>K</td>
<td>3.44</td>
<td>3.95</td>
<td>4.12</td>
</tr>
</tbody>
</table>

Adapted from: *Critical Care Med* 2003 Vol. 31, No. 6 pp 1654-1658
Catheter flush discard volume

Conclusion:
- Nearly all samples showed bias
- Discard volume 2X deadspace gives clinically acceptable values
- Catheter deadspace can vary with catheter type or manufacturer
Catheter Deadspace Volume
Pulmonary Artery Line (PAL)

- Source for mixed venous blood
- Often drawn with ABG for a-v O\textsubscript{2} content gradient
- Accurate Hb and %HbO\textsubscript{2} critical for a-v gradient

Results compromised if
- Line inadvertently wedged
- Sample withdrawn too quickly
- Improperly mixed
- Insufficient discard volume drawn
Pulmonary Artery Catheter Placement
Is There a Problem?

<table>
<thead>
<tr>
<th></th>
<th>Radial Artery</th>
<th>Pulm. Artery</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.31</td>
<td>7.38</td>
</tr>
<tr>
<td>pCO_2</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>pO_2</td>
<td>51</td>
<td>128</td>
</tr>
</tbody>
</table>
Proper PAL Placement

<table>
<thead>
<tr>
<th></th>
<th>Radial Artery</th>
<th>Pulm. Artery Redraw</th>
<th>Pulm. Artery Wedged</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.31</td>
<td>7.26</td>
<td>7.38</td>
</tr>
<tr>
<td>pCO_2</td>
<td>35</td>
<td>41</td>
<td>32</td>
</tr>
<tr>
<td>pO_2</td>
<td>51</td>
<td>31</td>
<td>128</td>
</tr>
</tbody>
</table>
PAL precautions-Erroneous Results

Catheter wedged or sample drawn too quickly

- PAL draws from “right heart or mixed venous”
- Wedged position draws from “left heart or arterial”
- Wedged samples reflects local V/Q (ventilation/perfusion)
 - pO_2 can be higher than arterial value
- Wedged sample \uparrow pH, $\downarrow pCO_2$, $\uparrow pO_2$ compared to PAL sample
PAL precautions

- Draw 2 x deadspace: otherwise, line fluid will contaminate sample

- Draw must be slow (1ml/5sec) for PA sample or mixed venous can be contaminated with “arterialized” blood

- PA sample drawn from inadvertently wedged catheter will be contaminated with “arterialized” blood

- Wedged samples must have balloon inflated
Now What’s Wrong?

<table>
<thead>
<tr>
<th></th>
<th>Arterial</th>
<th>Mixed Ven.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.45</td>
<td>7.29</td>
</tr>
<tr>
<td>pCO_2</td>
<td>30</td>
<td>44</td>
</tr>
<tr>
<td>pO_2</td>
<td>168</td>
<td>35</td>
</tr>
<tr>
<td>Hb g/dL</td>
<td>9.4 (94g/L)</td>
<td>14.5 (145g/L)</td>
</tr>
<tr>
<td>Hct</td>
<td>28</td>
<td>44</td>
</tr>
</tbody>
</table>
Specimen Mixing

- Whole blood samples must be mixed thoroughly (particularly for Hb/Hct accuracy)

Recommendation
- 15 second minimum (or longer)
- Mix in two planes (rock & roll)
- Be gentle (prevent hemolysis, very important for K)
Temperature Adjustment

Blood gas analyzers measure at 37° C

Patient temp correction algorithms:

- Temp adjusted pH reciprocal to temperature
 0.015 per C° (7.40 at 37° = 7.36 at 40°)
- pCO_2 increase/decrease with temperature
 5% per C° (40 mmHg at 37° = 46 at 40°)
- pO_2 increase/decrease with temperature
 6% per C° (50 mmHg at 37° = 59 at 40°)
Temperature Adjustment

<table>
<thead>
<tr>
<th>Temp.</th>
<th>37</th>
<th>39</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.40</td>
<td>7.37</td>
<td>7.50</td>
</tr>
<tr>
<td>ρCO_2</td>
<td>40</td>
<td>44</td>
<td>30</td>
</tr>
<tr>
<td>ρO_2</td>
<td>80</td>
<td>90</td>
<td>54</td>
</tr>
</tbody>
</table>

Temperature Adjustment

Routine temperature adjustment not recommended

- Reference range is at 37°C
- Wrong clinical decision?
 - Should not evaluate temp adjusted values vs. 37°C reference range
- How accurate are patient temperatures?
 - Oral, axial, elsewhere?
 - When was temp taken?
- Increases error probability
 - Comparing serial ABGs
- Role in rescue hypothermia/Bypass Surgery?
What could possibly be wrong???

<table>
<thead>
<tr>
<th></th>
<th>#1</th>
<th>Repeat</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.52</td>
<td>7.18</td>
</tr>
<tr>
<td>ρCO$_2$</td>
<td>115</td>
<td>35</td>
</tr>
<tr>
<td>ρO$_2$</td>
<td>9</td>
<td>219</td>
</tr>
<tr>
<td>Na</td>
<td>200</td>
<td>145</td>
</tr>
<tr>
<td>K</td>
<td>2.6</td>
<td>3.0</td>
</tr>
<tr>
<td>Ca</td>
<td>2.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Hb</td>
<td>6.7 (67)</td>
<td>5.2 (52)</td>
</tr>
<tr>
<td>Hct</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>
Patient Resuscitation

Infusion line in Rt. Femoral vein

Sample #1 drawn from Rt. Femoral

Repeat sample drawn from Lt. Femoral
In Summary: AVERT

Air in the sample
Venous sampling or admixture
Excessive or improper anticoagulation
Rate of metabolism
Temperature alterations

Pre-analytic Error Prevention

- Awareness
- Prevention
 - Policy/procedure
 - Training & competency
 - Monitoring compliance
- Reduced error = improved care/ better patient outcome
References/Resources

Clinical Blood Gases Assessment and Intervention, 2nd Edition
William J. Malley
Elsevier Saunders, St. Louis, MO

Preventing pre-analytical error in blood gas analysis
(3-part series)
Focus, 2006 Mar/Apr, Jul/Aug, Nov/Dec
John J. Ancy

Blood Gases and Pre-analytic Error Prevention
RT for Decision Makers, Feb. 2012
John J. Ancy