Vitamin D and Bone Disease etc...

• Part I
 – Osteoporosis
 – Bone turnover markers in the management of osteoporosis
 – Vitamin D
 • Its importance for bone health
 • Blood level monitoring

• Part II
 – Vitamins D's role in extraskeletal diseases
 • Cancer
 • Immune mediated
 • Other
 – The promise
 – The evidence
 – Current reality

Bone Composition

• Matrix
 – Predominantly type I collagen fibres

• Mineral
 – Calcium phosphate
 • Hydroxyapatite
 – $Ca_10(PO_{4})_6(OH)_2$

• Cells
 – osteocytes
 – osteoclasts
 – osteoblasts

Bone Remodeling

Osteocyte (mineralized bone tissue)
Osteoblast (forms bone matrix)
Osteogenic cell (stem cell)
Osteoclast (resorbs bone)
Bone Remodelling

- Osteoclasts
 - Resorption of bone
 - Life span
 - 2 weeks
- Osteoblasts
 - Formation of bone
 - mineralisation of new bone matrix
 - Life span
 - 2 – 3 months

Bone Remodelling

- Regulation
 - Mechanical stress
 - Systemic hormones
 - PTH
 - Estrogen
 - Local paracrine factors
- Mechanism of up-regulation
 - Increase in bone turnover
 - Increase in the surface area undergoing active remodelling

Calcium Homeostasis
Osteoporosis

• **Characteristics**
 – Low bone mass
 – Deterioration of bone tissue
 – Enhanced bone fragility
 – Increase in fracture risk
 – Most common metabolic bone disease

• **Definition**
 – **Who 1994**
 • Bone mineral density > 2.5 SD below a normal young adult mean

Osteoporosis

• **Screening**
 – Bone mineral density determination

• **Diagnosis - X ray**
 – osteopenia
 – Fracture

• **Biochemistry (rule out secondary causes)**
 – Ca++
 – Phosphorus
 – PTH
 – Estradiol
Osteoporosis Risk Factors

- Genetics
 - Polygenic
 - Vit D receptor
 - Collagen
 - Estrogen receptor
 - Cytokine variants
 - IL-6
 - TGF β

Osteoporosis and Thyroid Disease

- Environment
 - Reduced calcium intake
 - Reduced vitamin D intake
 - Liver conversion
 - 25-OH cholecalciferol
 - Renal conversion
 - 1,25-dihydroxycholecalciferol

- Lifestyle
 - Smoking
 - Alcohol excess, low physical activity and a low BMI

- Physiological
 - Menopause
 - Reduced estrogen
Osteoporosis - Estrogen Effect

- Lifetime risk of fractures at 50 years of age
 - Female
 - Femur 17.5%
 - Vertebra 15.5%
 - Forearm 16%
 - Male
 - Femur 6%
 - Vertebra 5%
 - Forearm 2.5%

Secondary Osteoporosis

- Unexplained fractures
- More severe disease than expected for age
- Iatrogenic
 - Corticosteroids
Osteoporosis - Treatment

• Lifestyle
 – Diet
 – Smoking
 – Exercise

• Therapeutic intervention
 – Calcium and vitamin D
 • With/without magnesium
 • Limited effectiveness
 • Are adequate serum levels being achieved?
 – Bisphosphonates
 • Alendronate
 • Known to be effective
 – Selective Estrogen receptor modulators (SERM)
 • Tamoxifen

Osteomalacia

• Impaired mineralisation
 – Calcium deposition in newly formed bone
 • Rickets in children
 – Excess unmineralised bone matrix (osteoid)

• Calcium Deficiency
 – Calciopenic
 – Often vitamin D deficiency (active form)

• Phosphate Deficiency
 – Phosphopenic
 – Phosphate binding antacids
 – ↓ Renal Tubular reabsorption

Biochemical Markers of Bone Turnover

• Bone Components
 – Collagen
 – Mineral
 – Osteoclasts and Osteoblasts

• Physiological/Pathological Targets
 – Formation
 – Resorption
Bone Turnover Markers

Formation
- Alkaline phosphatase (bone isoenzyme)
 - Osteoblastic activity
- Osteocalcin
- Procollagen peptides
 - Collagen synthesis
- Bone Sialoprotein
 - Collagen synthesis

Bone Turnover Markers

Resorption
- Collagen breakdown
 - Hydroxyproline
 - Galactosyl hydrolysine
 - Free crosslinks
 - Deoxypyridinoline (Dpd)
 - Pyridinoline (Pyr)
 - Peptide-bound crosslinks
 - NTX, CTX
- Osteoclast Activity
 - Tartrate resistant acid phosphatase

Collagen
- Pyridinoline crosslinks
 - pyridinoline
 - deoxypyridinoline
Crosslinks

- Pyridinoline crosslinks
 - pyridinoline
 - deoxypyridinoline

- Attached to telopeptides
 - C-terminal
 - "CTX"
 - N-terminal
 - "NTX"

Marker Comparison

- Bone Mineral Density
 - Slow response to therapeutic intervention
 - High cost

- Bone Turnover Markers (BTM)
 - Cannot determine bone status
 - Rapid ↓ in response to
 - Hormone Replacement Therapy
 - Bisphosphonate
 - Low Cost
 - Independent predictor of fracture

BTM Problems

- Biological variability
 - cyclical hormonal changes
 - seasonal changes in vitamin D
 - circadian rhythms
 - Less for Telopeptides (NTX, CTX)

- Imprecision
 - Variability due to urine concentration
 - Pyridinoline
 - Urine results corrected for creatinine
 - Serum assays available for NTX and CTX
Bone Turnover Marker Guidelines

• Measurement of **Absolute Value** of Serum Bone Turnover Markers (BTM) is of **no clinical use**
 - Since the gold standard for osteoporosis is DEXA the lack of BTM correlation implies poor diagnostic efficiency for BTM's

• The change from a baseline level in BTM's can provide more immediate indication of the effectiveness of therapy
 - Physician users should think in terms of least significant change

• Resorption markers are useful in this context
 - The Telopeptides NTX and CTX are good
 • Less diurnal and dietary variation
 • Serum CTX is best

Bone Turnover Marker Guidelines

• Measurement of **Absolute Value** of Serum Bone Turnover Markers (BTM) is of **no clinical use**

 - Since the gold standard for osteoporosis is DEXA the lack of BTM correlation implies poor diagnostic efficiency for BTM's

 BUT

 - BTM's may provide an independent risk factor for development of fractures

Other BTM Applications

• **Osteonecrosis of the Jaw**
 - Dentists need to detect this to avoid complications
 • Complication of Bisphosphonate Therapy
 • BTM's are sensitive markers for osteonecrosis

• **Bisphosphonate “Holidays”**
 - Patients on long term bisphosphonates may benefit from discontinuing therapy
 • Mitigates complications
 - Rise in BTM indicates Bisphosphonates need to be restarted.
Vitamin D and Bone Disease etc...

- Vitamin D
 - Its importance for bone health
 - Blood level monitoring

- Vitamins D's role in extraskeletal diseases
 - Cancer
 - Immune mediated
 - Other
 - The promise
 - The evidence
 - Current reality

Vitamin D3 vs D2

Cholecalciferol (aka: vitamin D3) - a form of vitamin D found in animal tissues.

Ergocalciferol (aka: vitamin D2) - a form of vitamin D found in plants.

Vitamin D Metabolism
Vitamin D Metabolism

Vitamin D Testing

- Serum 25 Hydroxy Vitamin D (25 OH - Cholecalciferol)
 - Measured by Direct Immunoassay
 - Ranges
 - Ideal 70 – 150 nmol/l
 - Subotimal 50 – 70 nmol/l
 - **Increased risk for Osteoporosis <50 nmol/l
 - Toxicity is rare
 - Insufficiency** is common
 - ~20 % of British Columbians tested at LifeLabs

- So is vitamin D deficiency an epidemic or not? **
 - Put simply, it depends on how you define your terms:
 - what blood level constitutes vitamin D insufficiency in an otherwise healthy population.
 - IOM and NCHS
 - reports rest on defining insufficiency as 25-hydroxyvitamin D blood levels below 20 ng/mL (<50 nmol/L)
 - the Endocrine Society and the National Osteoporosis Foundation
 - define insufficiency as 25(OH)D ≤30 ng/mL (<75 nmol/L).
 - seems like a small difference but
 - It has huge public health ramifications, essentially in defining the difference between sickness and health in 50% of the population.

National Osteoporosis Foundation. February 2012
25 Hydroxy Vitamin D
To Test or Not to Test

• “Don’t test for Vitamin D just give Vitamin D”
 – Vitamin D3 is cheap the test is expensive
• Problems with this philosophy
 – Compliance
 – Variable response to therapy
 • Some patients need 100 IU/day
 • Some patients need 2000 IU/day
• Bottom Line
 – 20% of BC patients are Vitamin D insufficient in 2012

Vitamin D Metabolism

1,25 Di Hydroxy Vitamin D Testing

• Serum 1,25 Di Hydroxy Vitamin D (1,25\ diOH -Cholecalciferol)
 – Measured by extraction then Radioimmunoassay
 – Concentration in pmol/l
• Not a good measure of Vitamin D status
 – Imprecise/Inaccurate methods
 • Competitive binding
 • Many interferences
 – Short half life
• However: it IS the active form
New Immunoassay Strategy for 1,25 Di Hydroxy Vitamin D

1,25 Di Hydroxy Vitamin D Testing
- Used for patients with
 - Severe renal disease
 - Suspected Sarcoidosis
 - Patients receiving 1,25 diOH – Cholecalciferol therapeutically
 - Tubular toxicity is a risk

Vitamin D and Cancer
- Many Publications Showing a relationship between Vitamin D levels (25 OH D) and Cancer prevention
 - Cancers showing the relationship include
 - Breast
 - Colorectal
 - Prostate
 - Pancreatic
 - ...etc
Vitamin D and Cancer

- Animals studies
 - VDR are in cancer cells
 - inhibition of proliferation by $1,25(OH)_2D_3$
 - rats fed diets low in vitamin D and calcium develop significantly more mammary tumors when treated with DMBA than rats fed control diets with adequate vitamin D and calcium
 - NMU breast cancer model
 - inhibition of the progression of mammary tumor growth observed in rats treated with $1,25(OH)_2D_3$ or analogs

Evidence for Effectiveness

- Relationship of 25 OH D levels and cancer risk
 - Relationship does not imply cause
 - Cancer patients aren’t healthy
 - Healthy people tend to be outside in the sun
 - 30 minutes of Sun Exposure => thousands of units of Vitamin D
 - Paradoxical upturn at high levels
 - Cancer Risk

Dosing Studies Mostly Negative

- Compliance???
 - Negative: Not actually taking the study medication
 - Positive: Those on placebo may be taking supplements
- Dosing levels too small
 - Women’s Health initiative
 - 400 IU/day
- Short Duration of Followup
Other Vitamin D Claims

- Autoimmune Disease
 - Multiple Sclerosis
 - Correlation of 25 OH D levels and disease progression
 - Shows an association but is not causal
 - Healthy people get more sun exposure?
 - Systemic Lupus Erythematosus
 - Rheumatoid arthritis

Vitamin D and the Immune System

- Early studies indicate the presence of VDR in activated T cells
- \(1,25(\text{OH})_2\text{D}_3\) inhibits lymphocyte proliferation
 - activation of IL-2 and interferon (IFN)\(\gamma\) are decreased after activated T cells are exposed to \(1,25(\text{OH})_2\text{D}_3\)
 - \(1,25(\text{OH})_2\text{D}_3\) shown to inhibit the differentiation and survival of dendritic cells
 - decrease in IL-12 and an increase in IL-10 secretion

Vitamin D and the Immune System

- IL-17 is inhibited by \(1,25(\text{OH})_2\text{D}_3\)
 - pathogenesis of autoimmune inflammation
 - implicated in autoimmune diseases
- animal studies
 - \(1,25(\text{OH})_2\text{D}_3\) can protect against
 - experimental autoimmune encephalomyelitis
 - the murine model of multiple sclerosis
 - systemic lupus erythematosus
 - inflammatory bowel disease (IBD)
 - autoimmune thyroiditis
Other Vitamin D Claims

- Cardiovascular Disease
 - Animal studies
 - Epidemiological studies
 - Large scale interventional trials have not been completed
- All cause mortality
 - Epidemiological studies only

Vitamin D Receptor Polymorphisms

- Associations with VDR Polymorphisms exist for cancers of:
 - Prostate
 - Colorectal
 - Breast
 - Skin

Significance is unknown

Future Vitamin D Studies

- Vitamin D/Calcium Polyp Prevention Study
 - Vitamin D +/- Calcium
 - 2200 patients
 - Completion December 2017
- Vitamin D and Omega-3 Trial (VITAL)
 - Various cancers
 - 20,000 patients
 - Completion June 2016
Conclusions

• Part I
 – Bone turnover markers have a role to play in the management of osteoporosis
 – Vitamin D monitoring still has a place in minimizing risk of fractures

• Part II
 – Vitamins D’s role in extraskeletal diseases is promising
 – However it is not yet established