Viridans Streptococci: Friends or Foes?

Romina Reyes, MD, FRCPC
Medical Microbiologist, LifeLabs
Clinical Instructor, Department of Pathology and Laboratory Medicine, UBC
"There are in fact two things, science and opinion; the former begets knowledge, the latter ignorance."

— Hippocrates
Overview

• Introduction to the group
• Current taxonomy
• Clinical significance & infections
• Emerging antibiotic resistance
• The role of the clinical microbiology laboratory
Introduction

• Viridans streptococci
 – (Latin). Viridis: green
 – (Greek). Strepto: bent or twisted like a chain
 – (Greek). Kokkos: berry
Introduction

• Viridans Group Streptococci
 – Heterogeneous group of organisms
 – Human commensals
 – Pathogens
Microbiology of the VGS
Microbiology

• VGS generally not beta-hemolytic
 – They may be non-hemolytic
 – Many produce alpha-hemolysis and a greenish discoloration on blood agar plates

• VGS generally do not react with Lancefield grouping sera
Microbiology

• Exceptions
 – *Streptococcus anginosus* are beta-hemolytic
 – *S. anginosus* react with Lancefield A, C, F or G antiserum
 – *S. mutans* has a Lancefield D reaction
VGS

• A motley crew of organisms that remain once you remove:
 – *S. pyogenes*
 – Lancefield group B organisms
 – Pneumococci
 – Enterococci
 – “Large colony” group C and G
Human Commensals

• Low pathogenic potential in immunocompetent hosts.

• Colonize:
 – Oral Cavity
 – Gastrointestinal Tract
 – Urogenital Tract
What’s Really in the Mouth?

- 206 pharyngeal and supragingival dental plaque samples
- Healthy children aged 4-18
Results

• VGS isolated from:
 – Pharyngeal swabs in 93% of children
 – Supragingival plaques in 72%

• 4-5 year olds
 – S. mitis

• 12-18 year olds
 – S. vestibularis

• S. mitis and anginosus recovered sporadically (2%)
Taxonomy of the VGS
Taxonomy

• 1906 Andrewes and Horder
• “Streptococcus mitis group”
 – S. mitis
 – S. salivarius
 – S. anginosus
Developing Taxonomy

• 1919 Orla-Jensen: *S. bovis*

• 1924 Clarke: *S. mutans*

• 1956 Guthof: “*Streptococcus milleri*”
 – Oral nonhemolytic streptococci
“Streptococcus milleri” group

- 1972 Coleman & Williams
 - Included minute beta-hemolytic and non-hemolytic oral streptococci

- 1987 Coykendall (International Journal of Systematic Bacteriology)
 - *Streptococcus anginosus* group
 - Approved name for these bacteria
 - Includes *S. anginosus*, *S. constellatus*, *S. intermedius*
Historical Nomenclature

• “Streptococcus milleri”
 – Not an approved bacterial name
 – Continues to be used in European and American literature
 – Continues to carry an important message to clinicians
 – Describes streptococci that cause suppurative infections
Basis of Old Taxonomy

• Phenotypic determinations
 – Biochemical characteristics
 – Amino acid hydrolysis
 – Sugar fermentation
 – DNA:DNA hybridization studies
Current Taxonomy

Sequence-based identification systems

• 16S rRNA gene sequencing
 – Poor resolution to species level of VGS
 – Some of these organisms have >99% gene sequence homology

• Alternate gene target sequencing
 – rnpB
 – Manganese-dependent superoxide dismutase gene
 – 16S-23S intergenic spacer region
 – D-alanine-D-alanine ligase gene
 – Hyaluronate lyase gene
• 16S rRNA
 – 16S ribosomal RNA
 – Component of the 30S subunit of prokaryotic ribosomes
 – 1542 nucleotides in length
 – Multiple sequences can exist within a single bacterium
Taxonomy

• Classification of VGS
 – S. mutans group
 – S. anginosus group
 – S. mitis group
 – S. sanguis group*
 – S. salivarius group
 – S. bovis group
Clinical Significance & Infections of the VGS
Clinical Significance

• VGS infections can result in significant morbidity and mortality

• Serious infections can occur when these organisms enter body sites that are usually sterile
Clinical Significance

- Infections can occur in health hosts

- Most commonly infections occur in:
 - Immunocompromised hosts
 - People with underlying cardiac abnormalities

- Pediatric infections
Clinical Significance

• VGS account for about one half of all cases of streptococcal endocarditis.

• *S. mutans* is responsible for dental caries.

• *S. anginosus* causes abscesses in the brain, liver and joints.
VGS Infections

- Endocarditis incidence
- Endocarditis in neutropenic patients
- Pediatric infections
- Abscesses and *S. anginosus*
- VGS in wounds
Infective Endocarditis

Endocarditis is an inflammation of the inside lining of the heart chambers and heart valves (endocardium).
Vegetation on Heart Valve

- The acute inflammation caused by the infection resulted in the formation of a "vegetation" on the valve, comprised of a mixture of thrombus ("blood clot"), bacteria and inflammatory cells.
Infective Endocarditis (IE)

- Gram positive bacteria are the most frequently identified causes:
 - Adhere to heart valves
 - >80% of all IE cases are caused by *Staphylococcus aureus*, *Streptococcus* spp, and *Enterococcus* spp.
Endocarditis

• *Streptococcus bovis*
 – Patients aged >60 years
 – Causative organism in 10% of cases of IE
 – Accompanied by abnormalities of the digestive tract, particularly colon carcinoma and villous adenoma.

Bacteremia and IE in Immunocompetent Adults & Children

• Clinical signs and symptoms
 – Upper respiratory tract symptoms
 – Lower respiratory tract symptoms
 – Post-seizure
 – Temperature >37°C
 – Hypotension

Bacteremia and IE in Immunocompetent Adults & Children

- **VGS cause of community acquired bacteremia**
 - 6.9% (50/723) adult patients
 - 12.3% (13/106) pediatric patients

- **Endocarditis**
 - 11.6% of adults
 - No children

- **30 day mortality**
 - 7.3%

IE in Neutropenic Patients

• IE caused by VGS in this high risk population:
 – 39% of bacteremia cases are due to VGS
 – VGS are the most frequent cause of IE

• The most frequently isolated species in blood culture are:
 – *Streptococcus mitis*
 – *Streptococcus sanguis II*

IE in Neutropenic Patients

- Mortality rates range from 6% to 30%.

- Case-control studies have identified the following risk factors:
 - severe neutropenia (< 100 neutrophils/mm³)
 - prophylactic antibiotic treatments with quinolone or co-trimoxazole
 - absence of intravenous antibiotics at the time of bacteremia
 - high doses of cytosine arabinoside
 - oropharyngeal mucositis
 - heavy colonization by viridans streptococci

Pediatric IE Infections

• IE occurs less frequently than in adults (1 per 1000 admissions):
 – Pediatrics: 1 per 1280 pediatric admissions

• VGS is the most common cause if IE in children
 – 20-43%

• Mortality rate is low (5.3%)

Pediatric IE Infections

• VGS symptoms
 – Prolonged low grade fevers
 – Arthralgias
 – Myalgias
 – Weight loss
 – Rigors
 – Fatigue
 – Weakness

• Very common for children to have continuous bacteremia

Pediatric CF Infections

• *S. anginosus* may be a significant pathogen
 – Associated with colonization with *Pseudomonas aeruginosa*.
 – Patients responded clinically and microbiologically to *S. anginosus* directed therapy (that had no activity to *P. aeruginosa*)
Pediatric Cancer Patients

- IE with VGS is common
 - Infections predominantly with *S. mitis* and *S. oralis*.

- Mucositis is an important risk factor as it provides a route of entry for VGS.
Infections by the Anginosus Group

• Suppurative infections (abscess formation):
 – Bacteremia
 – Endocarditis (3-15% of VGS)
 – Brain abscess
 – Pleural empyema
 – Lung abscess
 – Maxillary sinusitis
 – Intra-abdominal abscess
 – Infection of pacemaker
 – Infection of vascular graft
 – Skin and soft tissue
Infections by the Anginosus Group

- Often isolated with other organisms (such as anaerobes)
 - Japanese study of 68 hospitalized patients with S. anginosus group infections
 - 18% of cases were pure cultures
 - 82% cases were mixed cultures

Infections by the Anginosus Group

• Sites of clinical infection:
 – *S. anginosus* most frequently identified in the gastrointestinal tract and genitourinary specimens
 – *S. constellatus* most frequently identified from the respiratory tract
 – *S. intermedius* showed an association with infections of the central nervous system.

VGS Brain Abscess

- Viridans streptococci from dental procedures can seed to the heart.

- Literature reports of cases of VGS brain abscesses following dental procedures and maxillofacial trauma.
VGS Brain Abscess

• A 19-year-old male patient.
 – Diagnosed with *S. sanguinis* brain abscess
 – Unknown etiopathology
 – Subclinical endocarditis

• Highlights the importance of:
 – Prompt diagnosis
 – Initiation of antimicrobial therapy
 – Given the potential for long-term sequelae such as focal deficits and seizures

S. anginosus Group
Wound infections

• Intravenous drug users:
 – Septic complications occur frequently at the injection site
 – In the groin large abscesses around the femoral vessels can threaten life or limb.
 – Antecubital abscesses and bacteremia
Abscess Formation

- Marked swelling and redness is apparent just above antecubital fossa.

- This is caused by an abscess, the result of bacteria inoculated under the skin during injection drug abuse.
Antimicrobial Susceptibilities of the VGS
General AST Principles

• Often, knowledge of the taxonomic identity of bacteria causing the clinical infection can be used to predict the antimicrobial susceptibility patterns of the organism.

• But the VGS have undergone many rearrangements in taxonomy!
VGS Generalizations

• Antimicrobial resistance is substantial in the VGS as a group
• Penicillin resistance is high
 – 48% in USA strains
 – 45% in Canadian strains
 – 33% in Latin American strains.

Penicillin Resistance

• *S. mitis:*
 – Was the most common species identified in clinical samples
 – Was the species most likely to be penicillin resistant

• *S. oralis:*
 – Found to be (with *S. mitis*) most common in blood cultures of cancer patients
 – Commonly resistant to beta-lactam antibiotics

Penicillin Resistance

• *S. sanguis* group:
 – Resistance is also present but not as high as in the *S. mitis* group organisms.
S. mitis Group

• Among the VGS this group is most likely to become resistant to beta-lactams and macrolides.

 – Penicillin 16-34% R
 – Clindamycin 4-14% R
 – Erythromycin 40-51% R
 – Tetracycline 29-34 resistance R

S. mitis Group Resistance

- Implications of the emergence of resistance in VGS group are serious:
 - *S. mitis/oralis* are closely associated to *S. pneumoniae*
 - Similar species can transfer genetic material
 - Development of pneumococcal resistance to penicillin
S. anginosus Group

- **Penicillin:**
 - Resistance to beta-lactams is emerging

- **Macrolides:**
 - Resistance was found in 17% of strains

S. anginosus Group

• Species of *S. anginosus* group were identified by 16S rRNA (*S. anginosus, S. constellatus, S. intermedius*)
 – There was no difference found in the susceptibility patterns for the three species
 – Identification to the “milleri/anginosus group” may be sufficient for patient management and it’s not necessary to go to species level.

Antibiotic Usage

• Antibiotic usage drives resistance of penicillin and macrolides in VGS

• In pediatric and adult populations the most at risk for developing resistant and invasive VGS infections are the immunocompromised
 – This is also a population that receives frequent antibiotic treatment.
Antibiotic Usage

• Study by Kastner et al 2001 found that macrolide resistance developed in VGS in children treated for URTI
 – Initial pretreatment cultures taken
 – Antibiotics: azithromycin or clarithromycin
 – 1 week post-treatment 60% of patients had at least one macrolide-resistant organism
 – 6 weeks later 87% of patients treated with azithromycin were colonized with macrolide-resistant VGS (60% in clarithromycin group)

“The Good News”

• VGS remain susceptible to a group of antibiotics:
 – Vancomycin
 – Linezolid
 – Daptomycin
Emerging Problem

• VGS have developed resistance to penicillin and macrolide (MLS) antibiotics
• There are some group-specific resistance patterns
• Resistance to antibiotics is increasing the virulence of *S. pneumoniae* (a well defined human pathogen)
The Role of the Clinical Laboratory
Sterile Body Fluids

• Culture examination
 – Examine all inoculated plates and broth for growth at 24 hours
 – Reincubate if there is no visible growth
 – Read the plates daily for 4 additional days for invasively collected specimens

• Blood cultures
 – Incubate for 5 to 7 days

Sterile Body Fluids

• Cultures with growth on media
 – Notify your microbiologist
 – Correlate the culture results with those of the Gram stain made from the specimen
 – Identify all organisms

• The clinical picture can help direct us.
AST and Sterile Body Fluids

• Most viridans strep tested for AST are from serious infections
 – Report MIC
 – Report S/I/R

• MIC is clinically used to treat VGS bacteremia/endocarditis
Non-sterile Sites

• Aerobic Bacteriology Section
 – Chapter 3.13 “Wound Cultures”
 • Wound Abscesses and Soft Tissue Cultures
• Table 3.13.1-1 Aerobic and Anaerobic Isolates from Acute and Chronic Infections
 – Lists Streptococcus spp. (viridans group)
• Figure 3.13.1-5 Initial evaluation of positive wound cultures for organisms growing aerobically
 – A picture is worth a thousand words!!

Non-Sterile Sites

• Note: There are microorganisms that are usually considered significant even if isolated in low numbers or with mixed flora
 – Group A Streptococci
 – Group B Streptococci
 – Pseudomonas aeruginosa
 – etc
Non-Sterile Sites

• Generally identify VGS if isolated with 2 other organisms in a mixed culture (3 microorganisms) IF
 – WBCs seen on direct smear
 – The specimen was collected from a normally sterile site
 – The specimen is of good quality (few epithelial cells)
 – The organism was seen on the direct smear
Non-Sterile Sites

• Minimal testing for non-invasively collected specimens IF:
 – Many epithelial cells seen in direct smear
 – No inflammatory cells seen in direct smear and no clinical information available to indicate an infection
 – >3 organisms growing
Non-Sterile Sites

• Identify VGS to the genus level
 – Surgically collected specimens (biopsy)
 – Invasively collected specimens
 – If single or predominant pathogen
 – Inflammatory cells seen on the gram stain
Non-Sterile Sites

• May not need to identify VGS to the genus level if:
 – Very mixed culture
 – Not predominant
General Principles

• A positive culture indicates infection with the organism.
• WBCs are usually present in infections of body fluids.
• FP cultures can result from contamination of the specimen with flora.
• FN can be caused by low numbers of organisms, prior antibiotics or the fastidious nature of the infective organism.

Overview

• Introduction to the group
• Current taxonomy
• Clinical Significance & Infections
• Emerging antibiotic resistance
• The role of the clinical microbiology laboratory
Summary of the VGS

- **S. mutans group**
 - S. mutans, S. sobrinus
- **S. anginosus group**
 - S. anginosus, S. constellatus, S. intermedius
- **S. mitis group**
 - S. mitis, parasanguis, gordonii, cristatus, oralis, infantus, peroris, pneumonieae
- **S. sanguis group***
- **S. salivarius**
 - S. salivarius, S. vestibularis, S. thermophilus
- **S. bovis group**
 - I S. equinus (used to be S. bovis)
 - II S. gallolyticus
 - III S. infantarius
 - IV S. alactolyticus
Thank you.

Happy Holidays!